organic compounds

3032 independent reflections 1955 reflections with $I > 2\sigma(I)$

T = 293 (2) K

 $R_{\text{int}} = 0.0225$ 3 standard reflections every 200 reflections

 $0.30 \times 0.20 \times 0.10 \text{ mm}$

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

1-Methyl-1*H*-indazole-3-carboxylic acid

Si-shun Kang,^a Hong-wei Wang,^b Min Zhang,^a Ran-zhe Lu^a and Hai-bo Wang^a*

^aCollege of Science, Nanjing University of Technology, Xinmofan Road No. 5 Nanjing, Nanjing 210009, People's Republic of China, and ^bNantong Entry–Exit Inspection and Quarantine Bureau, Nantong 226005, People's Republic of China Correspondence e-mail: wanghaibo@njut.edu.cn

Received 27 October 2008; accepted 30 October 2008

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.004 Å; R factor = 0.058; wR factor = 0.143; data-to-parameter ratio = 12.8.

The asymmetric unit of the title compound, $C_9H_8N_2O_2$, contains two molecules. In the crystal structure, both molecules form inversion dimers *via* pairs of $O-H\cdots O$ hydrogen bonds, and a $C-H\cdots O$ interation is also seen.

Related literature

For the synthesis, see: Rousseau & Lindwall (1950).

Experimental

Crystal data

$C_9H_8N_2O_2$
$M_r = 176.17$
Monoclinic, $P2_1/n$
a = 7.5470 (15) Å

<i>b</i> = 14.873 (3) Å
c = 14.924 (3) Å
$\beta = 93.10 \ (3)^{\circ}$
V = 1672.7 (6) Å ³

Z = 8Mo $K\alpha$ radiation $\mu = 0.10 \text{ mm}^{-1}$

Data collection

Enraf–Nonius CAD-4
diffractometer
Absorption correction: ψ scan
(North et al., 1968)
$T_{\min} = 0.970, \ T_{\max} = 0.990$
3273 measured reflections

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.058$ $wR(F^2) = 0.143$ S = 1.003032 reflections intensity decay: 1% 237 parameters

H-atom parameters constrained $\Delta \rho_{\text{max}} = 0.18 \text{ e} \text{ Å}^{-3}$ $\Delta \rho_{\text{min}} = -0.21 \text{ e} \text{ Å}^{-3}$

Table 1			
Hydrogen-bond	geometry	(Å,	°).

$D - H \cdots A$	$D-\mathrm{H}$	$H \cdots A$	$D \cdot \cdot \cdot A$	$D - \mathbf{H} \cdots A$
$\begin{array}{c} D2 - H2A \cdots O1^{i} \\ D3 - H3A \cdots O4^{ii} \\ C8 - H8A \cdots O1^{iii} \end{array}$	0.82 0.82 0.93	1.82 1.82 2.52	2.632 (3) 2.619 (3) 3.293 (4)	173 164 140
Symmetry codes: $x + \frac{1}{2}, -y + \frac{1}{2}, z - \frac{1}{2}.$	(i) $-x, -y$	+1, -z + 1; (ii) $-x + 1, -y +$	1, -z + 1; (iii)

Data collection: *CAD-4 Software* (Enraf–Nonius, 1989); cell refinement: *CAD-4 Software*; data reduction: *XCAD4* (Harms & Wocadlo, 1995); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXL97*.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB2830).

References

Enraf-Nonius (1989). CAD-4 Software. Enraf-Nonius, Delft, The Netherlands.

Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany. North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351– 359.

Rousseau, V. & Lindwall, H. G. (1950). J. Am. Chem. Soc. 72, 3047–3051. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

supplementary materials

Acta Cryst. (2008). E64, o2257 [doi:10.1107/S160053680803554X]

1-Methyl-1*H*-indazole-3-carboxylic acid

S. Kang, H. Wang, M. Zhang, R. Lu and H. Wang

Comment

Methyl indazole carboxylic acid is an important pharmaceutical intermediate: many of its derivatives have biological activity and be used as a variety of drugs. We report here the crystal structure of the title compound, (I). There are O—H···O intermolecular H bonds in the structure between the hydrogencarboxylates forming the paired molecules that are situated on the crystallographic inversion centres (Table 1). The molecular structure of (I) is shown in Fig. 1.

Experimental

We prepared the title compound according to the literature method (Rousseau & Lindwall, 1950). Colourless blocks of (I) were obtained by slow evaporation of an petroleum/metanhol solution.

Refinement

The H atoms were placed geometrically (C—H = 0.93-0.97Å, O—H = 0.82Å) and refined as riding with $U_{iso}(H) = 1.2$ or $1.5U_{eq}(\text{carrier})$.

Figures

Fig. 1. A view of the molecular structure of (I), showing displacement ellipsoids at the 30% probability level (arbitrary spheres for the H atoms).

1-Methyl-1H-indazole-3-carboxylic acid

 Crystal data

 $C_9H_8N_2O_2$ $F_{000} = 736$
 $M_r = 176.17$ $D_x = 1.399 \text{ Mg m}^{-3}$

 Monoclinic, $P2_1/n$ Mo Ka radiation

 $\lambda = 0.71073 \text{ Å}$ Cell parameters from 25 reflections

 a = 7.5470 (15) Å $\theta = 9-13^{\circ}$

 b = 14.873 (3) Å $\mu = 0.10 \text{ mm}^{-1}$

c = 14.924 (3) Å	T = 293 (2) K
$\beta = 93.10 \ (3)^{\circ}$	Block, colorless
$V = 1672.7 (6) \text{ Å}^3$	$0.30\times0.20\times0.10~mm$
Z = 8	

Data collection

Enraf–Nonius CAD-4 diffractometer	$R_{\rm int} = 0.023$
Radiation source: fine-focus sealed tube	$\theta_{\text{max}} = 25.3^{\circ}$
Monochromator: graphite	$\theta_{\min} = 1.9^{\circ}$
T = 293(2) K	$h = -9 \rightarrow 9$
$\omega/2\theta$ scans	$k = 0 \rightarrow 17$
Absorption correction: ψ scan (North <i>et al.</i> , 1968)	$l = 0 \rightarrow 17$
$T_{\min} = 0.970, \ T_{\max} = 0.990$	3 standard reflections
3273 measured reflections	every 200 reflections
3032 independent reflections	intensity decay: 1%
1955 reflections with $I > 2\sigma(I)$	

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.058$	H-atom parameters constrained
$wR(F^2) = 0.143$	$w = 1/[\sigma^2(F_o^2) + (0.05P)^2 + 1.2P]$ where $P = (F_o^2 + 2F_c^2)/3$
S = 1.00	$(\Delta/\sigma)_{\rm max} = 0.007$
3032 reflections	$\Delta \rho_{max} = 0.18 \text{ e} \text{ Å}^{-3}$
237 parameters	$\Delta \rho_{\rm min} = -0.21 \text{ e } \text{\AA}^{-3}$
Deinsons store site la setione structure inconient direct	

Primary atom site location: structure-invariant direct Extinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*-factors based on ALL data will be even larger.

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
01	-0.0113 (3)	0.38836 (12)	0.50834 (13)	0.0608 (6)
02	0.0844 (3)	0.46943 (12)	0.39536 (13)	0.0627 (6)
H2A	0.0587	0.5109	0.4284	0.094*
N1	0.0777 (3)	0.17493 (14)	0.34517 (17)	0.0511 (6)
N2	0.0425 (3)	0.23313 (15)	0.41044 (16)	0.0491 (6)
C1	0.0605 (5)	0.07913 (19)	0.3588 (3)	0.0738 (10)
H1A	0.0634	0.0488	0.3021	0.111*
H1B	-0.0500	0.0667	0.3852	0.111*
H1C	0.1569	0.0583	0.3980	0.111*
C2	0.0474 (4)	0.39448 (17)	0.43217 (19)	0.0451 (7)
C3	0.0726 (3)	0.31492 (17)	0.37687 (17)	0.0402 (6)
C4	0.1346 (3)	0.31004 (17)	0.28951 (17)	0.0398 (6)
C5	0.1353 (3)	0.21700 (18)	0.27100 (19)	0.0444 (7)
C6	0.1899 (3)	0.37047 (19)	0.22478 (18)	0.0478 (7)
H6A	0.1896	0.4321	0.2355	0.057*
C7	0.2442 (4)	0.3372 (2)	0.1459 (2)	0.0593 (8)
H7A	0.2834	0.3769	0.1030	0.071*
C8	0.2429 (4)	0.2443 (2)	0.1273 (2)	0.0620 (9)
H8A	0.2790	0.2240	0.0722	0.074*
С9	0.1899 (4)	0.1841 (2)	0.1883 (2)	0.0604 (9)
H9A	0.1896	0.1228	0.1761	0.073*
O3	0.4920 (3)	0.38818 (12)	0.47829 (12)	0.0587 (6)
H3A	0.4752	0.4303	0.5122	0.088*
O4	0.5840 (3)	0.50052 (13)	0.39334 (14)	0.0655 (6)
N3	0.6825 (3)	0.30394 (16)	0.21444 (15)	0.0519 (6)
N4	0.6574 (3)	0.37909 (15)	0.26119 (15)	0.0474 (6)
C10	0.7390 (4)	0.3098 (2)	0.12273 (19)	0.0672 (9)
H10A	0.7340	0.2512	0.0957	0.101*
H10B	0.8584	0.3321	0.1234	0.101*
H10C	0.6618	0.3499	0.0887	0.101*
C11	0.5579 (3)	0.41736 (17)	0.40759 (18)	0.0433 (7)
C12	0.5990 (3)	0.35246 (17)	0.33950 (17)	0.0380 (6)
C13	0.5881 (3)	0.25681 (17)	0.34408 (18)	0.0406 (6)
C14	0.6464 (4)	0.22852 (19)	0.26155 (19)	0.0465 (7)
C15	0.6532 (4)	0.1370 (2)	0.2374 (2)	0.0616 (9)
H15A	0.6879	0.1192	0.1813	0.074*
C16	0.6078 (4)	0.0772 (2)	0.2984 (3)	0.0677 (10)
H16A	0.6139	0.0163	0.2849	0.081*
C17	0.5502 (4)	0.1039 (2)	0.3838 (2)	0.0669 (9)
H17A	0.5181	0.0600	0.4243	0.080*
C18	0.5410 (4)	0.19292 (18)	0.4077 (2)	0.0531 (7)
H18A	0.5050	0.2101	0.4638	0.064*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.1022 (16)	0.0363 (11)	0.0479 (12)	-0.0076 (11)	0.0402 (11)	-0.0043 (9)
02	0.1051 (18)	0.0305 (11)	0.0568 (12)	0.0012 (11)	0.0438 (12)	-0.0025 (9)
N1	0.0550 (15)	0.0271 (12)	0.0718 (17)	0.0010 (10)	0.0096 (12)	-0.0088 (11)
N2	0.0551 (15)	0.0355 (13)	0.0581 (15)	0.0028 (11)	0.0157 (12)	-0.0012 (11)
C1	0.081 (2)	0.0279 (16)	0.114 (3)	0.0007 (16)	0.016 (2)	0.0012 (17)
C2	0.0571 (18)	0.0305 (15)	0.0490 (16)	0.0005 (13)	0.0142 (13)	0.0002 (12)
C3	0.0432 (15)	0.0302 (14)	0.0486 (15)	-0.0013 (12)	0.0164 (12)	-0.0019 (12)
C4	0.0373 (14)	0.0384 (15)	0.0442 (15)	0.0003 (12)	0.0076 (11)	-0.0119 (12)
C5	0.0376 (14)	0.0370 (15)	0.0588 (17)	0.0082 (12)	0.0053 (13)	-0.0111 (13)
C6	0.0505 (17)	0.0407 (16)	0.0540 (17)	0.0059 (13)	0.0190 (13)	-0.0018 (13)
C7	0.063 (2)	0.067 (2)	0.0506 (18)	0.0077 (16)	0.0274 (15)	-0.0083 (15)
C8	0.0560 (19)	0.072 (2)	0.060 (2)	0.0090 (17)	0.0216 (16)	-0.0223 (18)
C9	0.0556 (19)	0.0517 (19)	0.074 (2)	0.0187 (15)	0.0041 (16)	-0.0255 (17)
03	0.0938 (16)	0.0357 (11)	0.0498 (12)	0.0046 (10)	0.0348 (11)	-0.0029 (9)
04	0.1026 (17)	0.0302 (11)	0.0684 (14)	-0.0035 (11)	0.0474 (12)	-0.0045 (10)
N3	0.0545 (15)	0.0510 (15)	0.0530 (14)	-0.0023 (12)	0.0282 (11)	-0.0153 (12)
N4	0.0506 (14)	0.0439 (14)	0.0497 (14)	0.0008 (11)	0.0214 (11)	-0.0049 (11)
C10	0.070 (2)	0.085 (3)	0.0489 (18)	-0.0068 (19)	0.0272 (16)	-0.0100 (17)
C11	0.0487 (16)	0.0323 (15)	0.0505 (16)	-0.0016 (12)	0.0189 (13)	-0.0036 (12)
C12	0.0395 (15)	0.0341 (14)	0.0414 (14)	0.0003 (12)	0.0104 (11)	-0.0038 (12)
C13	0.0370 (14)	0.0360 (15)	0.0497 (16)	0.0003 (12)	0.0120 (12)	-0.0085 (12)
C14	0.0406 (15)	0.0433 (16)	0.0567 (18)	0.0041 (13)	0.0130 (13)	-0.0134 (14)
C15	0.0557 (19)	0.050 (2)	0.080 (2)	0.0011 (15)	0.0145 (16)	-0.0312 (18)
C16	0.065 (2)	0.0334 (17)	0.104 (3)	0.0039 (15)	0.000 (2)	-0.0169 (18)
C17	0.071 (2)	0.0361 (18)	0.094 (3)	0.0008 (16)	0.0151 (19)	0.0054 (17)
C18	0.0606 (19)	0.0383 (16)	0.0621 (18)	0.0027 (14)	0.0183 (15)	0.0017 (14)

Geometric parameters (Å, °)

O1—C2	1.246 (3)	O3—C11	1.267 (3)
O2—C2	1.280 (3)	O3—H3A	0.8200
O2—H2A	0.8200	O4—C11	1.272 (3)
N1—N2	1.340 (3)	N3—N4	1.337 (3)
N1—C5	1.363 (4)	N3—C14	1.359 (4)
N1—C1	1.446 (3)	N3—C10	1.458 (3)
N2—C3	1.340 (3)	N4—C12	1.331 (3)
C1—H1A	0.9600	C10—H10A	0.9600
C1—H1B	0.9600	C10—H10B	0.9600
C1—H1C	0.9600	C10—H10C	0.9600
C2—C3	1.461 (4)	C11—C12	1.447 (3)
C3—C4	1.411 (3)	C12—C13	1.427 (4)
C4—C6	1.400 (4)	C13—C14	1.395 (4)
C4—C5	1.411 (3)	C13—C18	1.402 (4)
С5—С9	1.410 (4)	C14—C15	1.409 (4)
C6—C7	1.361 (4)	C15—C16	1.331 (5)

С6—Н6А	0.9300	C15—H15A	0.9300
С7—С8	1.409 (4)	C16—C17	1.425 (5)
C7—H7A	0.9300	C16—H16A	0.9300
C8—C9	1.353 (4)	C17—C18	1.374 (4)
C8—H8A	0.9300	С17—Н17А	0.9300
С9—Н9А	0.9300	C18—H18A	0.9300
C2—O2—H2A	109.5	С11—О3—НЗА	109.5
N2—N1—C5	112.2 (2)	N4—N3—C14	112.5 (2)
N2—N1—C1	120.8 (3)	N4—N3—C10	119.8 (2)
C5—N1—C1	127.0 (3)	C14—N3—C10	127.7 (2)
C3—N2—N1	105.7 (2)	C12—N4—N3	105.8 (2)
N1—C1—H1A	109.5	N3—C10—H10A	109.5
N1—C1—H1B	109.5	N3—C10—H10B	109.5
H1A—C1—H1B	109.5	H10A—C10—H10B	109.5
N1—C1—H1C	109.5	N3—C10—H10C	109.5
H1A—C1—H1C	109.5	H10A—C10—H10C	109.5
H1B—C1—H1C	109.5	H10B-C10-H10C	109.5
01-02-02	123 5 (2)	03-011-04	122.9(2)
01 - 02 - 03	123.3(2) 121.3(2)	03-C11-C12	122.9(2) 117.7(2)
$0^{2}-0^{2}-0^{3}$	1151(2)	04-C11-C12	117.7(2) 119.3(2)
$N_{2}^{2} = C_{3}^{2} = C_{4}^{2}$	113.1(2) 111.7(2)	N4-C12-C13	117.3(2) 111.2(2)
$N_{2} = C_{3} = C_{4}$	119.6 (2)	N4-C12-C11	111.2(2) 120.8(2)
C_{4} C_{3} C_{2}	119.6 (2)	C13 - C12 - C11	120.0(2) 128.0(2)
$C_{4} = C_{3} = C_{2}$	120.0(2)	$C_{13} - C_{12} - C_{13}$	120.0(2) 110.8(2)
C_{0}	137.0(2) 110.2(2)	$C_{14} = C_{13} = C_{13}$	117.0(2) 102.7(2)
$C_0 = C_4 = C_5$	119.5(2) 102.7(2)	C14 - C13 - C12	105.7(2) 126.5(2)
$C_{3} - C_{4} - C_{3}$	105.7(2) 122.2(2)	10 - 10 - 12	130.3(3)
N1_C5_C4	152.5(3) 106.6(2)	$N_{2} = C_{14} = C_{15}$	100.8(2)
NI-C5-C4	100.0(2)	N3-C14-C15	130.8 (3)
C9—C5—C4	121.1 (3)		122.3 (3)
C/-C6-C4	118.6 (3)	C16	117.2(3)
С/—С6—Н6А	120.7	C16—C15—H15A	121.4
С4—С6—Н6А	120.7	C14—C15—H15A	121.4
C6C7C8	121.9 (3)	C15-C16-C17	121.8 (3)
С6—С7—Н7А	119.1	C15—C16—H16A	119.1
С8—С7—Н7А	119.1	C17—C16—H16A	119.1
C9—C8—C7	121.0 (3)	C18—C17—C16	121.5 (3)
С9—С8—Н8А	119.5	C18—C17—H17A	119.2
С7—С8—Н8А	119.5	С16—С17—Н17А	119.2
C8—C9—C5	118.1 (3)	C17—C18—C13	117.3 (3)
С8—С9—Н9А	121.0	C17—C18—H18A	121.3
С5—С9—Н9А	121.0	C13—C18—H18A	121.3
C5—N1—N2—C3	1.9 (3)	C14—N3—N4—C12	-1.7 (3)
C1—N1—N2—C3	179.4 (3)	C10—N3—N4—C12	177.1 (2)
N1—N2—C3—C4	-2.2 (3)	N3—N4—C12—C13	0.8 (3)
N1—N2—C3—C2	-179.6 (2)	N3—N4—C12—C11	179.9 (2)
O1—C2—C3—N2	-4.2 (4)	O3—C11—C12—N4	175.5 (2)
O2—C2—C3—N2	178.0 (2)	O4—C11—C12—N4	-2.5 (4)
O1—C2—C3—C4	179.0 (3)	O3—C11—C12—C13	-5.5 (4)

supplementary materials

O2—C2—C3—C4	1.1 (4)	O4—C11—C12—C13	176.5 (3)
N2-C3-C4-C6	-178.1 (3)	N4-C12-C13-C14	0.4 (3)
C2—C3—C4—C6	-1.0 (5)	C11-C12-C13-C14	-178.7 (3)
N2—C3—C4—C5	1.6 (3)	N4-C12-C13-C18	178.5 (3)
C2—C3—C4—C5	178.7 (3)	C11-C12-C13-C18	-0.6 (5)
N2—N1—C5—C9	178.6 (3)	N4—N3—C14—C13	2.0 (3)
C1—N1—C5—C9	1.4 (5)	C10-N3-C14-C13	-176.7 (3)
N2—N1—C5—C4	-1.0 (3)	N4—N3—C14—C15	179.1 (3)
C1—N1—C5—C4	-178.2 (3)	C10-N3-C14-C15	0.4 (5)
C6—C4—C5—N1	179.4 (2)	C18-C13-C14-N3	-179.9 (2)
C3—C4—C5—N1	-0.4 (3)	C12-C13-C14-N3	-1.4 (3)
C6—C4—C5—C9	-0.3 (4)	C18-C13-C14-C15	2.7 (4)
C3—C4—C5—C9	179.9 (2)	C12-C13-C14-C15	-178.8 (3)
C3—C4—C6—C7	179.1 (3)	N3-C14-C15-C16	-179.3 (3)
C5—C4—C6—C7	-0.5 (4)	C13-C14-C15-C16	-2.6 (4)
C4—C6—C7—C8	1.2 (4)	C14—C15—C16—C17	1.6 (5)
C6—C7—C8—C9	-1.1 (5)	C15-C16-C17-C18	-0.9 (5)
C7—C8—C9—C5	0.3 (5)	C16-C17-C18-C13	0.9 (5)
N1—C5—C9—C8	-179.2 (3)	C14-C13-C18-C17	-1.8 (4)
C4—C5—C9—C8	0.4 (4)	C12-C13-C18-C17	-179.7 (3)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	D—H···A
O2—H2A···O1 ⁱ	0.82	1.82	2.632 (3)	173
O3—H3A···O4 ⁱⁱ	0.82	1.82	2.619 (3)	164
C8—H8A···O1 ⁱⁱⁱ	0.93	2.52	3.293 (4)	140

Symmetry codes: (i) -x, -y+1, -z+1; (ii) -x+1, -y+1, -z+1; (iii) x+1/2, -y+1/2, z-1/2.

